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Abstract

Fast Fourier transform — FFT — is a speed-up technique for calculating DFT — discrete
Fourier transform. This article is a practical tutorial for understanding and implemen-
tation of FFT — it contains theory, C++ source code and programming instructions.
Popular Cooley-Tukey algorithm is considered.

1 Introduction to fast Fourier transform

Fast Fourier transform — FFT — is a speed-up technique for calculating the discrete

Fourier transform — DFT, which in turn is the discrete version of the continuous Fourier

transform, which indeed is an origin for all its versions. So, historically the continuous form of

the transform was discovered, then the discrete form was created for sampled signals and then

an algorithm for fast calculation of the discrete version was invented.

2 Understanding FFT

First of all let us have a look at what Fourier transform is. Fourier transform is an integral of

the form:

F (u) =

∞∫
−∞

f(x)e−i2πuxdx (1)

The transform operates in complex domain. Recall, that imaginary exponent could be

written as:

eiφ = cosφ+ i sinφ (2)

For sampled function continuous transform (1) turns into discrete one:

Fn =
N−1∑
k=0

fke
−i 2π

N
kn (3)

Expression (3) is discrete Fourier transform — DFT. Here {f0, f1, . . . , fN−1} is input

discrete function and {F0, F1, . . . , FN−1} is result of Fourier transform.
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It is easily could be seen that to program DFT it is enough to write double loop and

just calculate sums of products of input samples and imaginary exponents. The number of

operations required is obviously of O(N2) order. But due to transform properties it is possible

to reduce the number of operations to the order of O(N log2N). Now, let us explore tricks we

can use to speed-up calculations.

Let us put N = 8 and write down our DFT:

Fn = f0 + f1e
−i 2π

8
n + f2e

−i 2π
8
2n + f3e

−i 2π
8
3n + f4e

−i 2π
8
4n + f5e

−i 2π
8
5n + f6e

−i 2π
8
6n + f7e

−i 2π
8
7n (4)

Easily could be seen we can split the sum into two similar sums separating odd and even

terms and factoring out the latter sum:

Fn =
[
f0 + f2e

−i 2π
8
2n + f4e

−i 2π
8
4n + f6e

−i 2π
8
6n
]

+ e−i 2π
8
n
[
f1 + f3e

−i 2π
8
2n + f5e

−i 2π
8
4n + f7e

−i 2π
8
6n
]

(5)

Now we can split the sums in brackets again:

Fn =
[(

f0 + f4e
−i 2π

8
4n
)
+ e−i 2π

8
2n
(
f2 + f6e

−i 2π
8
4n
)]

+ e−i 2π
8
n
[(

f1 + f5e
−i 2π

8
4n
)
+ e−i 2π

8
2n
(
f3 + f7e

−i 2π
8
4n
)]

(6)

Thus, we have 3 — log2 8 — levels of summation. The deepest one in parenthesis, the

middle one in brackets and the outer one. For every level exponent multiplier for the second

term is the same.

Fn =
[(
f0 + f4e

−iπn
)
+ e−iπ

2
n
(
f2 + f6e

−iπn
)]

+ e−iπ
4
n
[(
f1 + f5e

−iπn
)
+ e−iπ

2
n
(
f3 + f7e

−iπn
)]

(7)

And now the most important observation one can make to get speed-up: periodicity of the

exponent multipliers.

ei(φ+2π) = eiφ (8)

For the exponent multiplier e−iπn in parenthesis period is n = 2, which means sums in

parenthesis are exactly the same for n = 0, 2, 4, 6 and for n = 1, 3, 5, 7. It means on deepest

level in parenthesis we need 4× 2 = 8 — number of sums times period — sums in total. And

note, since n = 1, 3, 5, 7 corresponds to the half of the period π, exponent multiplier is the

same as for n = 0, 2, 4, 6 but with the opposite sign.

ei(φ+π) = −eiφ (9)

Indeed they are 1 for n = 0, 2, 4, 6 and −1 for n = 1, 3, 5, 7:

e−iπn =

{
1 for n = 0, 2, 4, 6

−1 for n = 1, 3, 5, 7
(10)
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For the exponent multiplier e−iπ
2
n in brackets the period is n = 4, which means we have

the same sums for pairs n = 0, 4; n = 1, 5; n = 2, 6 and n = 3, 7. It means on the middle

level in brackets we have 2× 4 = 8 sums and the second half of them could be received again

by changing sign in the first half of them — due to the fact distance between n and n+ 2 is π.

Thus, for n = 0, 4 the factor is 1 and for n = 2, 6 it is −1; for n = 1, 5 it equals −i and for

n = 3, 7 it is i.

e−iπ
2
n =


1 for n = 0, 4

−i for n = 1, 5
−1 for n = 2, 6
i for n = 3, 7

(11)

On the outer level we have just one sum for every transform component, and the period

of the exponent multiplier e−iπ
4
n is 8. Which gives us 1 × 8 = 8 sums and the second half of

them could be received by changing sign in the first half.

e−iπ
4
n =



1 for n = 0
1√
2
− i 1√

2
for n = 1

−i for n = 2
− 1√

2
− i 1√

2
for n = 3

−1 for n = 4
− 1√

2
+ i 1√

2
for n = 5

i for n = 6
1√
2
+ i 1√

2
for n = 7

(12)

So, on every calculation level we have 8 sums. In terms of N it means we have log2N

levels and N sums on every level, which gives us O(N log2N) order of number of operations.

On the other hand having the constant number of sums on every level means we can process

data in-place.

In summary, we have got fast Fourier transform — FFT. Now it is time to develop step-

by-step instruction list to be carved in code.

3 FFT algorithm

Having understanding of what features of DFT we are going to exploit to speed-up calculation

we can write down the following algorithm:

1. Prepare input data for summation — put them into convenient order;

2. For every summation level:

A. For every exponent factor of the half-period:

a. Calculate factor;

b. For every sum of this factor:

i. Calculate product of the factor and the second term of the sum;

ii. Calculate sum;

iii. Calculate difference.
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0 000 000 000 0
1 001 010 100 4
2 010 100 010 2
3 011 110 110 6
4 100 001 001 1
5 101 011 101 5
6 110 101 011 3
7 111 111 111 7

Table 1: Reordering in binary domain.

First step of reordering is putting input data into their natural order in (7): {f0, f1, f2,
f3, f4, f5, f6, f7} → {f0, f4, f2, f6, f1, f5, f3, f7}. Since this new order was received as result

of successive splitting terms into even and odd ones, in binary domain it looks like ordering

based on bit greatness starting from the least significant bit — see table 1.

This leads to “mirrored arithmetics” — result binary column in the mirror looks like {0,
1, 2, 3, 4, 5, 6, 7} — our initial order indeed. Thus, to reorder input elements it is enough just

to count in mirrored manner. Since double mirroring gives again the same number, reordering

reduces to swaps.

Summation levels include our parenthesis, brackets and outer level. In general case this

leads to iterations on pairs, quadruples, octads and so on.

Further, we iterate on components of half-period, second half-period we are getting as

result of taking differences instead of sums for the first half. Thus, for the deepest level of

parenthesis period is 2 and half-period is 1, which means this cycle will be executed only once.

For the second level period is 4 and half-period is 2 and cycle will be executed 2 times. In

general case we have succession 1, 2, 4, 8, . . . for this cycle.

Factor calculation is calculation of our imaginary exponent. To restrict the number of

trigonometric function calls (2) we use the recurrence:

ei(φ+δ) = eiφ + eiφ
(
−2 sin2 δ

2
+ i sin δ

)
(13)

Which is indeed expression

ei(φ+δ) = eiφeiδ (14)

written in a tricky way

eiφeiδ = eiφ (cos δ + i sin δ)

= eiφ
(
1− 2 sin2 δ

2
+ i sin δ

)
= eiφ + eiφ

(
−2 sin2 δ

2
+ i sin δ

)
(15)

using trignometric identity

cos δ = 1− 2 sin2 δ

2
(16)
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It is done not to lose significance for small δ — for this case cos δ ≈ 1 and sin δ ≈ δ, which

tells us that for cos δ memory will be just packed with .999999(9) but for sin δ there will be

much more useful information. Thus, (10) is just the way to eliminate cos δ from calculations.

If you look back at (7) you will find, that for N = 8 δ = π
2
, π
4
— not a small numbers. But for

transforms of much bigger N δ = π
2
, π

4
, π

8
, . . . up to 2π

N
, for sure, could be very small.

The innermost loop looks for sums, where calculated imaginary exponent present, calcu-

lates product and takes sum and difference, which is the sum for the second half-period at π

distance, where our exponent changes its sign but not the absolute value according to (9). To

perform in-place processing we utilize the following scheme:

fi

/.-,()*+−
%%LL

LLL
LLL

LLL
LL f ′

i

fj /.-,()*+×

/.-,()*++ 99rrrrrrrrrrrrr
f ′
j

Figure 1: FFT butterfly.

This operation is elementary brick of in-place FFT calculation and usually is called but-

terfly. The bottom term is multiplied by imaginary exponent and then sum of the terms is

stored in place of the upper term and difference is stored in place of the bottom term. General

butterfly picture is depicted below — fig. 2.
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Figure 2: All FFT butterflies for N = 8.

Elegant scheme. It is time to engrave this beauty in code. But before we delve into

programming let us make a small digression: it is known thing that Fourier transform is a

transfer to frequency domain, so, let us see how to be back from the realm of frequencies.
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4 Inverse Fourier transform

Expression for inverse Fourier transform is

f(x) =

∞∫
−∞

F (u)ei2πuxdu (17)

and its discrete counterpart is

fk =
1

N

N−1∑
n=0

Fne
i 2π
N

kn (18)

Thus, the difference between forward (3) and inverse (18) transforms is just a sign and not

necessary scale factor — one does not need it if interested in ratio between components but not

in absolute values. It means that the routine for forward transform with slight modification

can perform inverse one as well.

5 FFT programming

Here is our FFT class declaration.

class CFFT

{

public:

// FORWARD FOURIER TRANSFORM

// Input - input data

// Output - transform result

// N - length of both input data and result

static bool Forward(const complex *const Input, complex *const Output,

const unsigned int N);

// FORWARD FOURIER TRANSFORM, INPLACE VERSION

// Data - both input data and output

// N - length of both input data and result

static bool Forward(complex *const Data, const unsigned int N);

// INVERSE FOURIER TRANSFORM

// Input - input data

// Output - transform result

// N - length of both input data and result

// Scale - if to scale result

static bool Inverse(const complex *const Input, complex *const Output,

const unsigned int N, const bool Scale = true);

// INVERSE FOURIER TRANSFORM, INPLACE VERSION

// Data - both input data and output

// N - length of both input data and result
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// Scale - if to scale result

static bool Inverse(complex *const Data, const unsigned int N,

const bool Scale = true);

protected:

// Rearrange function and its inplace version

static void Rearrange(const complex *const Input, complex *const Output,

const unsigned int N);

static void Rearrange(complex *const Data, const unsigned int N);

// FFT implementation

static void Perform(complex *const Data, const unsigned int N,

const bool Inverse = false);

// Scaling of inverse FFT result

static void Scale(complex *const Data, const unsigned int N);

};

Class has four public methods for performing FFT: two functions for forward transform

and two ones for inverse transform. Every couple consists of in-place version and version that

preserves input data and outputs transform result into provided array.

Protected section of the class has as well four functions: two functions for data preprocess-

ing — putting them into convenient order, core function for transform performing and auxiliary

function for scaling the result of inverse transform.

Every of four public methods is very similar and is indeed wrapper that controls processing

workflow. Let us see how one of them designed.

// FORWARD FOURIER TRANSFORM, INPLACE VERSION

// Data - both input data and output

// N - length of both input data and result

bool CFFT::Forward(complex *const Data, const unsigned int N)

{

// Check input parameters

if (!Data || N < 1 || N & (N - 1))

return false;

// Rearrange

Rearrange(Data, N);

// Call FFT implementation

Perform(Data, N);

// Succeeded

return true;

}

Inside wrapper you can find check of input parameters, then data preparation — rear-

rangement, — and transform itself. Rearrange function uses our “mirrored mathematics” to

define new position for every element and swaps elements:
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// Inplace version of rearrange function

void CFFT::Rearrange(complex *const Data, const unsigned int N)

{

// Swap position

unsigned int Target = 0;

// Process all positions of input signal

for (unsigned int Position = 0; Position < N; ++Position)

{

// Only for not yet swapped entries

if (Target > Position)

{

// Swap entries

const complex Temp(Data[Target]);

Data[Target] = Data[Position];

Data[Position] = Temp;

}

// Bit mask

unsigned int Mask = N;

// While bit is set

while (Target & (Mask >>= 1))

// Drop bit

Target &= ~Mask;

// The current bit is 0 - set it

Target |= Mask;

}

}

While loop implements addition of 1 in mirrored manner to get target position for the

element.

Now there is turn of the core method, which performs our fast Fourier transform.

// FFT implementation

void CFFT::Perform(complex *const Data, const unsigned int N,

const bool Inverse /* = false */)

{

const double pi = Inverse ? 3.14159265358979323846 : -3.14159265358979323846;

// Iteration through dyads, quadruples, octads and so on...

for (unsigned int Step = 1; Step < N; Step <<= 1)

{

// Jump to the next entry of the same transform factor

const unsigned int Jump = Step << 1;

// Angle increment

const double delta = pi / double(Step);

// Auxiliary sin(delta / 2)

const double Sine = sin(delta * .5);

// Multiplier for trigonometric recurrence

const complex Multiplier(-2. * Sine * Sine, sin(delta));
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// Start value for transform factor, fi = 0

complex Factor(1.);

// Iteration through groups of different transform factor

for (unsigned int Group = 0; Group < Step; ++Group)

{

// Iteration within group

for (unsigned int Pair = Group; Pair < N; Pair += Jump)

{

// Match position

const unsigned int Match = Pair + Step;

// Second term of two-point transform

const complex Product(Factor * Data[Match]);

// Transform for fi + pi

Data[Match] = Data[Pair] - Product;

// Transform for fi

Data[Pair] += Product;

}

// Successive transform factor via trigonometric recurrence

Factor = Multiplier * Factor + Factor;

}

}

}

The code is exact reflection of our FFT algorithm and butterfly scheme in fig. 2. Difference

between forward and inverse transforms is reflected in the first line of the method where the

proper sign for exponent argument is set. Initializations inside outer loop are just preparations

for successive calculation of factors via trigonometric recurrence. And the job done inside inner

loop, which performs butterfly operations. Trigonometric recurrence in the last line is exactly

our expression (13).

Wrappers for inverse transform are designed the same way as for forward one:

// INVERSE FOURIER TRANSFORM, INPLACE VERSION

// Data - both input data and output

// N - length of both input data and result

// Scale - if to scale result

bool CFFT::Inverse(complex *const Data, const unsigned int N,

const bool Scale /* = true */)

{

// Check input parameters

if (!Data || N < 1 || N & (N - 1))

return false;

// Rearrange

Rearrange(Data, N);

// Call FFT implementation

Perform(Data, N, true);

// Scale if necessary

if (Scale)

CFFT::Scale(Data, N);
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// Succeeded

return true;

}

The only difference is conditional scaling of the result at postprocessing stage. By default

the scaling is performed according to (18) but if one interested only in relative values she can

drop the corresponding flag to skip this operation. Scaling itself is a primitive function below.

// Scaling of inverse FFT result

void CFFT::Scale(complex *const Data, const unsigned int N)

{

const double Factor = 1. / double(N);

// Scale all data entries

for (unsigned int Position = 0; Position < N; ++Position)

Data[Position] *= Factor;

}

Well, our FFT is ready.

6 Online resources

This article online:

Fast Fourier transform — FFT

“Fast Fourier Transform” book:

Download book “Fast Fourier Transform” (pdf, 270 kB).

You can download full source code here:

Download fast Fourier transform — FFT — C++ source code (zip, 4 kB).

Full file listings are available online as well:

Appendix A.1. Fast Fourier transform — FFT — source code — fft.h — file of declara-

tions;

Appendix A.2. Fast Fourier transform — FFT — source code — fft.cpp — file of

implementation.

Optimized for high performance source code of complex number class you can find here:

Appendix B.1. Complex number source code — complex.h — file of declarations;

Appendix B.2. Complex number source code — complex.cpp — file of implementation.

Librow calculator script DFT-8 — a tool for FFT verification and debugging:

Download DFT-8 — Librow calculator script (zip, 1.5 kB).

10

http://www.librow.com/articles/article-10
http://www.librow.com/content/en/download/articles/article-10/fft-book.pdf
http://www.librow.com/content/en/download/articles/article-10/fft_code.zip
http://www.librow.com/articles/article-10/appendix-a-1
http://www.librow.com/articles/article-10/appendix-a-2
http://www.librow.com/articles/article-10/appendix-b-1
http://www.librow.com/articles/article-10/appendix-b-2
www.librow.com/content/en/download/articles/article-10/dft-script.zip


Librow caclulator — to run the script.

Librow FFT library:

Download Librow FFT library — C++ version (zip, 4 kB).

Download Librow FFT library — STL version (zip, 2.5 kB).

Download Librow FFT library — ANSI C version (zip, 2.8 kB).

7 How to use

To utilize the FFT you should include header file fft.h and place in your code lines like:

...Usually at the top of the file

// Include FFT header

#include "fft.h"

.

...Some code here

.

...Inside your signal processing function

// Allocate memory for signal data

complex *pSignal = new complex[1024];

...Fill signal array with data

// Apply FFT

CFFT::Forward(pSignal, 1024);

...Utilize transform result

// Free memory

delete[] pSignal;

Here in-place forward Fourier transform performed for signal of 1024 samples size.

8 Final remarks

The FFT algorithm implemented in literature is called Cooley-Tukey. There is also Sand-Tukey

algorithm that rearranges data after performing butterflies and in its case butterflies look like

ours in fig. 2 but mirrored to the right so that big butterflies come first and small ones do last.

From all our considerations follows that length of input data for our algorithm should be

power of 2. In the case length of the input data is not power of 2 it is good idea to extend the

data size to the nearest power of 2 and pad additional space with zeroes or input signal itself in

a periodic manner — just copy necessary part of the signal from its beginning. Padding with

zeroes usually works well.

If you were attentive you could notice that butterflies in parenthesis and brackets in (7) do

not really need multiplications but only additions and subtractions. So, optimizing two deepest

levels of butterflies we can even improve FFT performance.
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