
Sergey Chernenko

intro series

FAST
FOURIER
TRANSFORM

Sergey Chernenko

FAST
FOURIER

TRANSFORM

www. librow. com

2022

www.librow.com

Abstract

The book consideres in details how to program fast Fourier trans-
form — FFT — in C++. It explains theory, algorithms and C++
code to give clear understanding of how and why every line of the
code was written and what ideas were behind.

Contents

I Theory 1

1 Introduction to fast Fourier transform 3

2 Understanding FFT 5

3 FFT algorithm 13

4 Inverse Fourier transform 17

II Implementation 19

5 FFT programming 21

6 Online resources 29

III Application 31

7 How to use 33

8 Final remarks 35

List of Figures

2.1 Imaginary exponent. 6
2.2 Periodicity of the imaginary exponent. 8
2.3 Half-period of the imaginary exponent. 8
2.4 Exponent multiplier e−iπn. 9
2.5 Exponent multiplier e−i π2 n. 10
2.6 Exponent multiplier e−i π4 n. 11

3.1 FFT butterfly. 15
3.2 All FFT butterflies for N = 8. 16

List of Tables

3.1 Reordering in binary domain 14

PART I

Theory

CHAPTER 1
Introduction to fast Fourier

transform

Fast Fourier transform — FFT — is a speed-up technique for
calculating the discrete Fourier transform — DFT, which in turn is
the discrete version of the continuous Fourier transform, which
indeed is an origin for all its versions. So, historically the continu-
ous form of the transform was discovered, then the discrete form
was created for sampled signals and then an algorithm for fast
calculation of the discrete version was invented.

3

CHAPTER 2
Understanding FFT

First of all let us have a look at what the Fourier transform is. The
Fourier transform is an integral of the form:

F (u) =
∞∫

−∞
f (x)e−i 2πuxd x (2.1)

The transform operates in a complex domain. Recall, that
imaginary exponent could be written as:

e iϕ = cosϕ+ i sinϕ (2.2)

For a sampled function the continuous transform (2.1) turns
into the discrete one:

Fn =
N−1∑
k=0

fke−i 2π
N kn (2.3)

5

6 Understanding FFT

r e

i m

−1 1

−i

i

0

ϕ

e iϕ

cosϕ

sinϕ

Figure 2.1: Imaginary exponent.

Expression (2.3) is the discrete Fourier transform — DFT. Here
{ f0, f1, . . . , fN−1} is an input discrete function and {F0, F1, . . . , FN−1}
is the result of the Fourier transform.

It is easily could be seen that to program DFT it is enough
to write a double loop and just calculate sums of products of the
input samples and imaginary exponents. The number of opera-
tions required is obviously of O(N 2) order. But due to transform
properties it is possible to reduce the number of operations to the
order of O(N log2 N). Now, let us explore tricks we can use to
speed-up calculations.

Let us put N = 8 and write down our DFT:

Fn = f0 + f1e−i 2π
8 n + f2e−i 2π

8 2n + f3e−i 2π
8 3n

+ f4e−i 2π
8 4n + f5e−i 2π

8 5n + f6e−i 2π
8 6n + f7e−i 2π

8 7n (2.4)

Easily could be seen we can split the sum into two similar
sums separating odd and even terms and factoring out the latter
sum:

7

Fn =
[

f0 + f2e−i 2π
8 2n + f4e−i 2π

8 4n + f6e−i 2π
8 6n

]
+e−i 2π

8 n
[

f1 + f3e−i 2π
8 2n + f5e−i 2π

8 4n + f7e−i 2π
8 6n

]
(2.5)

Now we can split the sums in brackets again:

Fn =
[(

f0 + f4e−i 2π
8 4n

)
+e−i 2π

8 2n
(

f2 + f6e−i 2π
8 4n

)]
+e−i 2π

8 n
[(

f1 + f5e−i 2π
8 4n

)
+e−i 2π

8 2n
(

f3 + f7e−i 2π
8 4n

)]
(2.6)

Thus, we have 3 — log2 8 — levels of summation. The deepest
one in parenthesis, the middle one in brackets and the outer one.
For every level the exponent multiplier for the second term is the
same.

Fn =
[(

f0 + f4e−iπn)+e−i π2 n (
f2 + f6e−iπn)]

+e−i π4 n
[(

f1 + f5e−iπn)+e−i π2 n (
f3 + f7e−iπn)]

(2.7)

And now the most important observation one can make to get
a speed-up: periodicity of the exponent multipliers.

e i (ϕ+2π) = e iϕ (2.8)

For the exponent multiplier e−iπn in parenthesis period is
n = 2, which means sums in parenthesis are exactly the same for
n = 0, 2, 4, 6 and for n = 1, 3, 5, 7. It means on the deepest level in
parenthesis we need 4×2 = 8 — number of sums times the period
— sums in total. And note, since n = 1, 3, 5, 7 corresponds to the
half of the period π, the exponent multiplier is the same as for
n = 0, 2, 4, 6 but with the opposite sign.

8 Understanding FFT

r e

i m

−1 1

−i

i

0

ϕ

2π

e iϕ = e i (ϕ+2π)

cosϕ

sinϕ

Figure 2.2: Periodicity of the imaginary exponent.

r e

i m

−1 1

−i

i

0

ϕπ

e iϕ

e i (ϕ+π)

cosϕ−cosϕ

sinϕ

−sinϕ

Figure 2.3: Half-period of the imaginary exponent.

e i (ϕ+π) =−e iϕ (2.9)

Indeed they are 1 for n = 0, 2, 4, 6 and −1 for n = 1, 3, 5, 7:

9

r e

i m

−1 1

−i

i

0

n = 0,2,4,6n = 1,3,5,7

Figure 2.4: Exponent multiplier e−iπn .

e−iπn =
{

1 for n = 0,2,4,6
−1 for n = 1,3,5,7 (2.10)

For the exponent multiplier e−i π2 n in brackets the period is
n = 4, which means we have the same sums for pairs n = 0, 4;
n = 1, 5; n = 2, 6 and n = 3, 7. It means on the middle level in
brackets we have 2×4 = 8 sums and the second half of them could
be received again by changing sign in the first half of them — due
to the fact the distance between n and n +2 is π. Thus, for n = 0,
4 the factor is 1 and for n = 2, 6 it is −1; for n = 1, 5 it equals −i
and for n = 3, 7 it is i .

e−i π2 n =

1 for n = 0,4

−i for n = 1,5
−1 for n = 2,6

i for n = 3,7

(2.11)

10 Understanding FFT

r e

i m

−1 1

−i

i

0

n = 0,4

n = 3,7

n = 2,6

n = 1,5

Figure 2.5: Exponent multiplier e−i π2 n .

On the outer level we have just one sum for every transform
component, and the period of the exponent multiplier e−i π4 n is 8.
Which gives us 1×8 = 8 sums and the second half of them could
be received by changing sign in the first half.

e−i π4 n =

1 for n = 0
1p
2
− i 1p

2
for n = 1

−i for n = 2
− 1p

2
− i 1p

2
for n = 3

−1 for n = 4
− 1p

2
+ i 1p

2
for n = 5

i for n = 6
1p
2
+ i 1p

2
for n = 7

(2.12)

So, on every calculation level we have 8 sums. In terms of N
it means we have log2 N levels and N sums on every level, which
gives us O(N log2 N) order of number of operations. On the other
hand having the constant number of sums on every level means
we can process data in-place.

11

r e

i m

−1 1

−i

i

0
n = 0

n = 7

n = 6

n = 5

n = 4

n = 3

n = 2

n = 1

Figure 2.6: Exponent multiplier e−i π4 n .

In summary, we have got fast Fourier transform — FFT. Now
it is time to develop a step-by-step instruction list to be carved in
code.

CHAPTER 3
FFT algorithm

Having understanding of what features of DFT we are going to
exploit to speed-up its calculation we can write down the following
algorithm:

1. Prepare input data for summation — put them into conve-
nient order;

2. For every summation level:

A. For every exponent factor of the half-period:

a. Calculate factor;
b. For every sum of this factor:

i. Calculate product of the factor and the second
term of the sum;

ii. Calculate sum;
iii. Calculate difference.

The first step of reordering is putting input data into their
natural order in (2.7): { f0, f1, f2, f3, f4, f5, f6, f7} → { f0, f4, f2,

13

14 FFT algorithm

0 000 000 000 0
1 001 010 100 4
2 010 100 010 2
3 011 110 110 6
4 100 001 001 1
5 101 011 101 5
6 110 101 011 3
7 111 111 111 7

Table 3.1: Reordering in binary domain

f6, f1, f5, f3, f7}. Since this new order was received as result of
successive splitting terms into even and odd ones, in binary domain
it looks like ordering based on bit greatness starting from the least
significant bit — see table 3.1.

This leads to “mirrored arithmetics” — result binary column
in the mirror looks like {0, 1, 2, 3, 4, 5, 6, 7} — our initial order
indeed. Thus, to reorder input elements it is enough just to count
in mirrored manner. Since double mirroring gives again the same
number, reordering reduces to swaps.

Summation levels include our parenthesis, brackets and outer
level. In general case this leads to iterations on pairs, quadruples,
octads and so on.

Further, we iterate on components of half-period, second half-
period we are getting as result of taking differences instead of sums
for the first half. Thus, for the deepest level of parenthesis period
is 2 and half-period is 1, which means this cycle will be executed
only once. For the second level period is 4 and half-period is 2 and
cycle will be executed 2 times. In general case we have succession
1, 2, 4, 8, . . . for this cycle.

Factor calculation is calculation of our imaginary exponent. To
restrict the number of trigonometric function calls (2.2) we use

15

the recurrence:

e i (ϕ+δ) = e iϕ+e iϕ

(
−2sin2 δ

2
+ i sinδ

)
(3.1)

Which is indeed expression

e i (ϕ+δ) = e iϕe iδ (3.2)

written in a tricky way not to lose significance for small δ— for this
case cosδ≈ 1 and sinδ≈ δ, which tells us that for cosδ memory
will be just packed with .999999(9) but for sinδ there will be much
more useful information. Thus, (3.1) is just the way to eliminate
cosδ from calculations. If you look back at (2.7) you will find, that
for N = 8 δ= π

2 , π
4 — not a small numbers. But for transforms of

much bigger N δ = π
2 , π

4 , π
8 , . . . up to 2π

N , for sure, could be very
small.

The innermost loop looks for sums, where calculated imag-
inary exponent present, calculates product and takes sum and
difference, which is the sum for the second half-period at π dis-
tance, where our exponent changes its sign but not the absolute
value according to (2.9). To perform in-place processing we utilize
the following scheme:

fi f ′
i

f j f ′
j

−

+

×

Figure 3.1: FFT butterfly.

This operation is elementary brick of in-place FFT calculation
and usually is called butterfly. The bottom term is multiplied by

16 FFT algorithm

imaginary exponent and then sum of the terms is stored in place
of the upper term and difference is stored in place of the bottom
term. General butterfly picture is depicted below — fig. 3.2.

f0 F0

f4 F1

f2 F2

f6 F3

f1 F4

f5 F5

f3 F6

f7 F7

Figure 3.2: All FFT butterflies for N = 8.

Elegant scheme. It is time to engrave this beauty in code. But
before we delve into programming let us make a small digression:
it is known thing that Fourier transform is a transfer to frequency
domain, so, let us see how to be back from the realm of frequencies.

CHAPTER 4
Inverse Fourier transform

Expression for inverse Fourier transform is

f (x) =
∞∫

−∞
F (u)e i 2πuxdu (4.1)

and its discrete counterpart is

fk = 1

N

N−1∑
n=0

Fne i 2π
N kn (4.2)

Thus, the difference between forward (2.3) and inverse (4.2)
transforms is just a sign and not necessary scale factor — one does
not need it if interested in ratio between components but not in
absolute values. It means that the routine for forward transform
with slight modification can perform inverse one as well.

17

PART II

Implementation

CHAPTER 5
FFT programming

Here is our FFT class declaration.

class CFFT
{
public:

// FORWARD FOURIER TRANSFORM
// Input - input data
// Output - transform result
// N - length of both input data and result
static bool Forward(const complex *const Input,

complex *const Output, const unsigned int N);

// FORWARD FOURIER TRANSFORM, INPLACE VERSION
// Data - both input data and output
// N - length of both input data and result
static bool Forward(complex *const Data,

const unsigned int N);

21

22 FFT programming

// INVERSE FOURIER TRANSFORM
// Input - input data
// Output - transform result
// N - length of both input data and result
// Scale - if to scale result
static bool Inverse(const complex *const Input,

complex *const Output, const unsigned int N,
const bool Scale = true);

// INVERSE FOURIER TRANSFORM, INPLACE VERSION
// Data - both input data and output
// N - length of both input data and result
// Scale - if to scale result
static bool Inverse(complex *const Data,

const unsigned int N, const bool Scale = true);

protected:
// Rearrange function and its inplace version
static void Rearrange(const complex *const Input,

complex *const Output, const unsigned int N);
static void Rearrange(complex *const Data,

const unsigned int N);

// FFT implementation
static void Perform(complex *const Data,

const unsigned int N,
const bool Inverse = false);

// Scaling of inverse FFT result
static void Scale(complex *const Data,

const unsigned int N);
};

23

The class has four public methods for performing FFT: two
functions for the forward transform and two ones for the inverse
transform. Every couple consists of the in-place version and a
version that preserves the input data and outputs the transform
result into the provided array.

The protected section of the class has as well four functions:
two functions for data preprocessing — putting them into the
convenient order, a core function for transform performing and an
auxiliary function for scaling the result of the inverse transform.

Every of four public methods is very similar and is indeed a
wrapper that controls processing workflow. Let us see how one of
them is designed.

// FORWARD FOURIER TRANSFORM, INPLACE VERSION
// Data - both input data and output
// N - length of both input data and result
bool CFFT::Forward(complex *const Data,

const unsigned int N)
{

// Check input parameters
if (!Data || N < 1 || N & (N - 1))

return false;
// Rearrange
Rearrange(Data, N);
// Call FFT implementation
Perform(Data, N);
// Succeeded
return true;

}

Inside wrapper you can find check of the input parameters,
then data preparation — rearrangement, — and transform itself.

24 FFT programming

Rearrange function uses our “mirrored mathematics” to define
new position for every element and swaps elements:

// Inplace version of rearrange function
void CFFT::Rearrange(complex *const Data,

const unsigned int N)
{

// Swap position
unsigned int Target = 0;
// Process all positions of input signal
for (unsigned int Position = 0; Position < N;

++Position)
{

// Only for not yet swapped entries
if (Target > Position)
{

// Swap entries
const complex Temp(Data[Target]);
Data[Target] = Data[Position];
Data[Position] = Temp;

}
// Bit mask
unsigned int Mask = N;
// While bit is set
while (Target & (Mask >>= 1))

// Drop bit
Target &= ~Mask;

// The current bit is 0 - set it
Target |= Mask;

}
}

The while loop implements addition of 1 in mirrored manner

25

to get the target position for the element.
Now there is a turn of the core method, which performs our

fast Fourier transform.

// FFT implementation
void CFFT::Perform(complex *const Data,

const unsigned int N,
const bool Inverse /* = false */)

{
const double pi = Inverse ?

3.14159265358979323846 : -3.14159265358979323846;
// Iteration through dyads, quadruples,
// octads and so on...
for (unsigned int Step = 1; Step < N; Step <<= 1)
{

// Jump to the next entry of the same
// transform factor
const unsigned int Jump = Step << 1;
// Angle increment
const double delta = pi / double(Step);
// Auxiliary sin(delta / 2)
const double Sine = sin(delta * .5);
// Multiplier for trigonometric recurrence
const complex Multiplier(-2. * Sine * Sine,

sin(delta));
// Start value for transform factor, fi = 0
complex Factor(1.);
// Iteration through groups of different
// transform factor
for (unsigned int Group = 0; Group < Step; ++Group)
{

// Iteration within group
for (unsigned int Pair = Group; Pair < N;

26 FFT programming

Pair += Jump)
{

// Match position
const unsigned int Match = Pair + Step;
// Second term of two-point transform
const complex Product(Factor * Data[Match]);
// Transform for fi + pi
Data[Match] = Data[Pair] - Product;
// Transform for fi
Data[Pair] += Product;

}
// Successive transform factor via
// trigonometric recurrence
Factor = Multiplier * Factor + Factor;

}
}

}

The code is exact reflection of our FFT algorithm and butter-
fly scheme in fig. 3.2. The difference between the forward and
the inverse transforms is reflected in the first line of the method
where the proper sign for the exponent argument is set. Initializa-
tions inside the outer loop are just preparations for the successive
calculation of the factors via trigonometric recurrence. And the
job is done inside the inner loop, which performs the butterfly
operations. Trigonometric recurrence in the last line is exactly our
expression (3.1).

The wrappers for the inverse transform are designed the same
way as for the forward one:

// INVERSE FOURIER TRANSFORM, INPLACE VERSION
// Data - both input data and output
// N - length of both input data and result

27

// Scale - if to scale result
bool CFFT::Inverse(complex *const Data,

const unsigned int N, const bool Scale /* = true */)
{

// Check input parameters
if (!Data || N < 1 || N & (N - 1))

return false;
// Rearrange
Rearrange(Data, N);
// Call FFT implementation
Perform(Data, N, true);
// Scale if necessary
if (Scale)

CFFT::Scale(Data, N);
// Succeeded
return true;

}

The only difference is a conditional scaling of the result at the
postprocessing stage. By default the scaling is performed according
to (4.2) but if one is interested only in relative values she can drop
the corresponding flag to skip this operation. Scaling itself is a
primitive function below.

// Scaling of inverse FFT result
void CFFT::Scale(complex *const Data,

const unsigned int N)
{

const double Factor = 1. / double(N);
// Scale all data entries
for (unsigned int Position = 0; Position < N;

++Position)
Data[Position] *= Factor;

28 FFT programming

}

Well, our FFT is ready.

CHAPTER 6
Online resources

Online article:

http://www.librow.com/articles/article-10 — Fast
Fourier transform — FFT.

You can download full source code here:

www.librow.com/content/en/download/articles/
article-10/fft_code.zip — FFT C++ source code,
zip, 4 kB.

Full file listings are available online as well:

www.librow.com/articles/article-10/appendix-a-1 —
FFT source code — file of declarations fft.h;

www.librow.com/articles/article-10/appendix-a-2 —
FFT source code — file of implementation fft.cpp.

Optimized for high performance source code of complex number
class you can find here:

29

http://www.librow.com/articles/article-10
www.librow.com/content/en/download/articles/article-10/fft_code.zip
www.librow.com/content/en/download/articles/article-10/fft_code.zip
www.librow.com/articles/article-10/appendix-a-1
www.librow.com/articles/article-10/appendix-a-2

30 Online resources

www.librow.com/articles/article-10/appendix-b-1 —
complex number source code — file of declarations com-
plex.h;

www.librow.com/articles/article-10/appendix-b-2 —
complex number source code — file of implementation com-
plex.cpp.

Librow calculator script DFT-8 — a tool for FFT verification and
debugging:

www.librow.com/content/en/download/articles/
article-10/dft-script.zip — Librow calculator script,
zip, 1.5 kB;

www.librow-calculator.com — Librow caclulator to run
the script.

Librow FFT library:

www.librow.com/content/en/download/articles/
article-10/fft_cpp.zip — C++ version, zip, 4 kB;

www.librow.com/content/en/download/articles/
article-10/fft_stl.zip — STL version, zip, 2.5 kB;

www.librow.com/content/en/download/articles/
article-10/fft_c.zip — ANSI C version, zip, 2.8 kB.

www.librow.com/articles/article-10/appendix-b-1
www.librow.com/articles/article-10/appendix-b-2
www.librow.com/content/en/download/articles/article-10/dft-script.zip
www.librow.com/content/en/download/articles/article-10/dft-script.zip
www.librow-calculator.com
www.librow.com/content/en/download/articles/article-10/fft_cpp.zip
www.librow.com/content/en/download/articles/article-10/fft_cpp.zip
www.librow.com/content/en/download/articles/article-10/fft_stl.zip
www.librow.com/content/en/download/articles/article-10/fft_stl.zip
www.librow.com/content/en/download/articles/article-10/fft_c.zip
www.librow.com/content/en/download/articles/article-10/fft_c.zip

PART III

Application

CHAPTER 7
How to use

To utilize the FFT you should include the header file fft.h and place
in your code lines like:

...Usually at the top of the file
// Include FFT header
#include "fft.h"
.
...Some code here
.

...Inside your signal processing function
// Allocate memory for signal data
complex *pSignal = new complex[1024];
...Fill signal array with data
// Apply FFT
CFFT::Forward(pSignal, 1024);
...Utilize transform result
// Free memory
delete[] pSignal;

33

34 How to use

Here inplace forward Fourier transform is performed for a signal
of 1024 samples size.

CHAPTER 8
Final remarks

The FFT algorithm implemented in literature is called Cooley-
Tukey. There is also Sand-Tukey algorithm that rearranges data
after performing butterflies and in its case butterflies look like ours
in fig. 3.2 but mirrored to the right so that the big butterflies come
first and the small ones do last.

From all our considerations follows that the length of the input
data for our algorithm should be power of 2. In the case length
of the input data is not a power of 2 it is a good idea to extend
the data size to the nearest power of 2 and pad additional space
with zeroes or input signal itself in a periodic manner — just copy
the necessary part of the signal from its beginning. Padding with
zeroes usually works well.

If you were attentive you could notice that butterflies in the
parenthesis and brackets in (2.7) do not really need multiplications
but additions and subtractions only. So, optimizing two deepest
levels of butterflies we can even improve the FFT performance.

35

	Theory
	Introduction to fast Fourier transform
	Understanding FFT
	FFT algorithm
	Inverse Fourier transform

	Implementation
	FFT programming
	Online resources

	Application
	How to use
	Final remarks

